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Recall the formulas
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More generally:









See The Book of Numbers by Conway and Guy









Applying the identity, lots of terms cancel:





which gives Faulhaber’s formula!



Some History



Johann Faulhaber

1k + 2k + ...+ nk

• Born 1580 in Ulm, Germany 
• Found a formula for                          , for           , 

now known as Faulhaber’s formula                                    
• The mysterious coefficients in his formula would 

later become known as the Bernoulli numbers

k  17



• Born 1655 in Basel, Switzerland 
• Gave the first comprehensive treatment of the Bernoulli 

numbers in Ars Conjectandi (1713)

Jacob Bernoulli



Seki Takakazu

• Born ~1642 in Japan 
• Credited with independently discovering the 

Bernoulli numbers

Tabulation of binomial coefficients 
 and Bernoulli numbers  

from Katsuyo Sampo (1712) 



The Analytical Engine 

• Designed by Charles Babbage in 1837 
• One of the first designs for a mechanical computer 
• Around 1842, the mathematician Ada Lovelace wrote 

arguably the first computer program, which computes 
the Bernoulli numbers!



Charles Babbage 
b. 1791 in London, England

Ada Lovelace 
b. 1815 in London, England 



Bernoulli numbers also come up naturally in 
the Taylor series of trigonometric functions:



Denominators of Bernoulli numbers:
The von Staudt-Clauen Theorem: the denominator of the 2nth 
Bernoulli number is the product of all primes p such that p-1 

divides 2n.
Ex:



Infinite sum formulas
Euler proved the following formulas:



Connections with the 
Riemann zeta function:

• This sum is uniformly convergent on compact 
subsets of the complex half-space {Re(s) > 0} 
and hence defines an analytic function of s there 

• In fact,        admits an analytic continuation to              



In terms of the Riemann zeta function

Euler’s formulas can be written as

(for k a positive integer)



The Riemann zeta function:

After extending the domain of the zeta function, 
one can also compute its values at negative 

integers:



We get rather bizarre 
formulas:



Note that the Bernoulli numbers come up for both negative 
and positive s values



Regular primes
•An prime p is called regular if it does not divide the numerator 
of B^k for k=2,4,6,…,p-3  

•It is conjectured that about 60.65% of all primes are regular 
•In 1850 Kummer proved Fermat’s Last Theorem for regular 
primes, i.e. a^p+ b^p = c^p

 

has no solutions, provided p is a 
regular prime. It would be ~150 years before this was 

Ernst Kummer 
Born 1810 in Sorau, Prussia



Bernoulli numbers in 
stable homotopy theory

Let       denote the n-dimensional sphere.Sn

S1
S2 S3



Let         denote the ith homotopy 
group of the n-dimensional sphere:

⇡i(S
n)

where for maps                       and                     we have                              
if and only if f and be deformed into g through 

continuous maps

f : Si ! Sn g : Si ! Sn

f ⇠ g

Ex: ⇡1(S2
) has only one element



There are more homotopy 
groups of spheres than 

one might expect. 

Ex: ⇡3(S2
) = Z,

generated by the Hopf map h : S3 ! S2

http://en.wikipedia.org/wiki/Hopf_fibration

http://en.wikipedia.org/wiki/Hopf_fibration


Suspension of a 
topological space

http://en.wikipedia.org/wiki/Suspension_%28topology%29

For a topological space X, there is something called

the suspension of X, denoted ⌃X

Ex: ⌃Sn
= Sn+1

 

http://en.wikipedia.org/wiki/Suspension_%28topology%29


For a topological space X, there is something called

the suspension of X, denoted ⌃X

 

Given a map f : X ! Y ,
we get a map ⌃f : ⌃X ! ⌃Y

f

⌃f

!

!



The Freudenthal suspension theorem states that this is an 
isomorphism if n > k+1

This means that there is a map ⇡n+k(Sn) ! ⇡n+k+1(Sn+1)

Let        denote                   for                 ⇧k ⇡n+k(S
n) n >> k

In general, the field of stable homotopy theory studies what 
happens to topology when you suspend everything in sight 

a million times.



Computing ⇡i(Sn
) is an extremely di�cult open problem in topology.

We know the values for small values of i and n:

http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres#Table_of_stable_homotopy_groups

http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres#Table_of_stable_homotopy_groups


Computing ⇧k is in principle easier, but still a very hard open problem.

Computing ⇡i(Sn
) is an extremely di�cult open problem in topology.

We know the answer for small values of k:

http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres#Table_of_stable_homotopy_groups
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Bernoulli numbers enter the picture 
via the so-called J homomorphism

Let O(n) denote the orthogonal group consisting of all 
nxn matrices A such that ATA = AAT = In

O(n) is a Lie group. Roughly speaking this means that:
• It is a group, i.e. we can multiply and invert 

elements 
• It is a topological space, i.e there is a natural 

notion of two elements being “close” to each 
other



Let O(n) denote the orthogonal group consisting of all nxn matrices A such 
that ATA = AAT = In

O(n) is a Lie group. Roughly speaking this means that:

• It is a group, i.e. we can multiply and invert elements 
• It is a topological space, i.e there is a natural notion of two elements 

being “close” to each other

Since O(n) is a topological space, it makes sense 
to talk about its homotopy groups

It turns out that                is independent of k for n >> k⇡k(O(n))

Bott computed                 , and remarkably the 
answer is 8-periodic!

⇡k(O(1))



Bott periodicity:

Raoul Bott 
b. 1923 in Budapest, Hungary



J : ⇡i(O(n)) ! ⇡i+n(Sn)

Taking n to be rather large, we get a subgroup Im(J) ⇢ ⇧i

There is a homomorphism

Im(J) consists of classes of maps f : Sa ! Sb

such that f�1
(p) for a random point p 2 Sb

is a (a� b)-dimensional sphere

|Im(J)| = 2· denominator

✓
B2k

2k

◆

for Im(J) ⇢ ⇧4k�1



Bernoulli also come up in 
formulas for the numbers of 

“exotic spheres” in dimension n

|⇥4k�1| = R(k) · |⇧4k�1| ·B2k/2k

R(k) := 22k�3(22k�1 � 1) if k is even

where

R(k) := 2

2k�2
(2

2k�1 � 1) if k is odd

Let ⇥n denote the group of n-dimensional exotic spheres

Milnor and Kervaire (1962) showed:



Thanks for listening!


