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Recall the tormulas

194929 . 40l =n
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Toprove1—|—2—|—...—|—n:§(n2—|—n):

S:=14+2+..+n
S=n+n-1)+..+1
2S=(14+n)+24+n—-1)+...+(n+1)=n(n+1)

S =n(n+1)/2



L/ o 3 1
To prove 12 + 2% + ... +n? = 3 (n3+ §n2+ 571)

R::{(:zt,y,z)EZ3 1<z <n, 1<y<n+1,1<z<n+1}.

So |[R|=nn+1)(n+1).

We can partition R as R = R, U R, U R, where

R, ={(z,y,z) € R : x is maximal }

R, ={(z,y,2) € R : yis maximal and z is not maximal }

R. ={(x,y,z) € R : zis maximal and strictly larger than x and y}

See https://gowers.wordpress.com/2014/11/04/sums-of-kth-powers/



https://gowers.wordpress.com/2014/11/04/sums-of-kth-powers/

R::{(m,y,z)€Z3 1<z<n 1<y<n+1,1<z<n+1}
We can partition R as R = R, UR, U R, where

R, ={(z,y,2) € R : x is maximal }
R, ={(z,y,z) € R : yis maximal and x is not maximal }

R, ={(z,y,z) € R : zis maximal and strictly larger than x and y}

So |R| = n(n +1)(n +1).
We have:

Ry| =1 4+2°+ ...+ n°

Ryl = (1)(2) +(2)(3) + (3)(4) + ... +(n)(n+1)
—1°+2°+ ... +n°+14+2+...+n

R, =142+ ... +n°

See https://gowers.wordpress.com/2014/11/04/sums-of-kth-powers/
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We have:

R| = n(n+ 1)

Ryl =12+ 2%+ ...+ n°

R, =1)2)+(2)3)+(3)(4) + ... + (n)(n + 1)
=124+224+ .. 4+n*+1+2+..+n

IR.| =1%+2° + ... + n?

So [R| = |Ry| + |Ry| + |R.| gives:

nn+1)?=3124+2°+...+n)+(14+2+..+n)

=31+ 2°+ ...+ nY) +n(n+1)/2

and hence 12 + 22 + ... +n? = — n3 4+ —n?+ =n|.

nn+1)*-nn+1)/2 1 3 1
3 5( 2 2 )



More generally:

Set S(n) = >, i*. Then we have
So(n) =n

1Ly 14 1 n*(n —1)?
53(n) = 1714 - 5713 =+ an = ( 1 )

1 - 1 1 1 n(n—1)(2n —1)(3n* —3n -1

Gi(n) = =pd — ey 23
1(n) = gn? = gni 4 gnt = o5 30
S5(n) = lnﬁ B ln-’ n En‘l - ing _ n?(2n* —2n —1)(n —1)?




Sk(n)

Set Si(n) = >, i*. Then we have
So(n) =n

Si(n) = %nQ - %n = n(nQ— D

Sy(n) = lnS _ 1n2 + ln _ n(n—1)2n —1)

3 2 6 6
1 1. 1 n?(n —1)?
S3(n) = Zn4 En“ + Zn2 = ( 1 )

a— . ‘ 2 . o
54(71) = %n" — lnd + ln3 _ in _ n(n 1)(272 1)(371 3n —1

5 2 3 30 30
1 . 1 - 5 1 n%(2n% —2n — 1)(n — 1)?
55(71) — 6n() o Eno + énél o ERQ — ( T )( ) .

One can start to see a pattern:

1 k-+1 1 k k k—1 k—2
- “nk 0
1 T




Here are some Bernoulli numbers:

B =1

B' =1/2
B*=1/6
B*=-1/30

B =1/42

B® = —1/30

BY =5/66

B = —691/2730
BY =17/6

B = —-3617/510

B = 43867/798

B% = —174611/330

B?* = 854513/138

B* = —236364091/2730
B = 8553103/6

B* = —23749461029/870
B3 = 8615841276005 /14322



Faulhaber’s formula for Si(n)

S" | i" states that:




L LR g LR g R\ k-3, —L(K\ k4
Sk_l(n)—k(n +2<1>n +6(2>n +0 3 n' v+ 30 \ 4 n"" "t 4.

= — (Bonk + B! (T) nk—1 1 B2 (g) nkF—2 4 B3 (g) nk—3 4 B4 (Z) nk—4 41 ) )

| =

Following Conway and Guy, we can derive this formula using a clever notational trick.

Recall the binomial theorem:

(a + b)* = a* + kba" 1 + (g) b2a 2 + (];) b2a 3 + L+ b

Let us now agree to interpret expressions like “ (100 + B)* 7 as

k
“(100 + B)* 7 := 100* + kB'100*! + (2) B*100% 2 + ...

with BY =1,B' =1/2,B°=1/6,B°% =0, B* = —1/30, etc.

See The Book of Numbers by Conway and Guy



Let us now agree to interpret expressions like “ (100 + B)* 7 as

k
“ (100 + B)* 7 := 100* + kB*100*~! + (2> B*100% 2 + ...

with B’ =1,B' =1/2,B*>=1/6,B> =0, B* = —1/30, etc.

We can now rewrite Faulhaber’s formula as

(n—|—B)k — BF
k

for Sk._l(n) — F:?_l k1

Sk_l(n) —




It turns out that Bernoulli numbers satisty the following identities:

B* —-2B' +1= B

B’ -3B*+3B'—-1=DB’

B* - 4B’ +6B* —4B'+1 = B*

B®> —5B*+10B° —10B*+5B' — 1= B°

etc.




It turns out that Bernoulli numbers satisty the following identities:

B* —2B' +1 = B?

B? -3B*+3B!'—1=DB°

B* —4B% +6B? —4B' +1 = B*

B®> —5B*+10B% —10B* + 5B — 1 = B®

etc.

In our notation:

(B—1)"=B"

for k > 2.



Now let us compare (100 + B)* with (99 + B)*:

(100 + B)* = 100* + kB'100%~! + (2> B?*100%2 + (3) B3100%3 + ...
(99 + B)* = (100 + B — 1)*

. . k - k .
= 100F + k(B — 1)'100F ! + ( 2) (B —1)%100%2 + ( 3> (B —1)%100%3 + ...

Applying the identity, lots of terms cancel:

(100 + B)* — (99 + B)* = kB'100*! — k(B — 1)'100"~! = k100%~1.



(100 + B)* — (99 + B)* = kB*100* ! — k(B — 1)'100" ! = k1001,
Similarly, we have
(99 + B)® — (98 + B)* = k99~~1

(2+ B)" — (14 B)* = k2F!
(1+ B)* — B¥ = k181,



Similarly, we have

(99 + B)¥ — (98 + B)* = k99k—1

(2+ B)" — (14 B)* = k2¢1
(14 B)® — B¥ = k181,

Adding these up, we get

(100 + B)* — B¥ = k(1Y 4 21 4 . 4991 4 10071,

which gives Faulhaber's formula!



0.000001000% -
0.000000900%
0.000000800% -
0.000000700%
0.000000600% +
0.000000500% A
0.000000400% -
0.000000300% -
0.000000200% -

0.000000100% 4

Some History
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Bernoulli numbers



Johann Faulhaber
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 Born 1580 in Ulm, Germany

e Found a formula for 1* +2% + ... +nF fork < 17,

now known as Faulhaber's formula

* [The mysterious coefficients in his formula would
later become known as the Bernoulli numbers




Jacob Bernoulll

 Born 1655 in Basel, Switzerland
* (Gave the first comprehensive treatment of the Bernoulli
numbers in Ars Conjectandi (1713)



Seki Takakazu

Tabulation of binomial coefficients
and Bernoulli numbers
from Katsuyo Sampo (1712)

 Born ~1642 in Japan
» Credited with independently discovering the
Bernoulli numbers



T'he Analytical Engine
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* Designed by Charles Babbage in 1837
* One of the first designs for a mechanical computer
 Around 1842, the mathematician Ada Lovelace wrote

arguably the first computer program, which computes
the Bernoulli numbers!



Charles Babbage | Ada Lovelace
b. 1791 in London, England b. 1815 in London, England



Bernoulll numbers also come up naturally In
the Taylor series of trigonometric functions:

‘ =1 ~ BQTQ | B4T4 | BﬁT6+
ex_l 2 | 2!,, | 4!./ | 6!./
B o0 (_1)71—12271,(2271 _ 1)327133271—1
tan r = T; (2n)!

B 0 (_1)n+12(22n—1 o 1)32”“.’132”_1
CSCTU = Z (Qn)'

n=0

o0 -nQQnBQnTZn—l

—1
cotxr = Z ( ) (2n)!

n=0




Denominators of Bernoulll numbers:

The von Staudt-Clauen Theorem: the denominator of the 2nth
Bernoulli number is the product of all primes p such that p-1
divides 2n.

EX:
B*=1/6; 2%x3=6

B*=-1/30; 2%3%5 =30
B® =1/42; 2% 3 %7 =42
B® = —1/30; 2%3%5 =30
BY =5/66; 2%3%11 =66

B'? = —691/2730; 2%3 %57 %13 = 2730



INfiNnite sum formulas

—uler proved the following formulas:

1 1 1 1,
]. | 22 | 32 | 42 | :67'(-
QTR Lo

24 34 g4 90
11 1 1 .
F—= 4+ =+ = + ... = T
2() 36 4() 045
1 1 1 22k
14 | | F... ‘ng‘ﬂzk.

C 92k 32k T 42k (QA)



. T
S

d

Connections with the
Riemann zeta tunction:

((s) =) m™*
m=0

upbsets of the comp
nd hence defines a

e |nfact, ((s) admits a

C

ex half-space {

Nis sum is uniformly convergent on compact

Re(s) > 0}

N analytic functi

on of s there

N analytic continuation to

\ 1}



INn terms of the Riemann zeta function

C(s) == m™*,

m=0
Euler’s formulas can be written as

22k—1

(for k a positive integer)

C(2k) =



The Riemann zeta function:  ¢(s) == )  m™>,

m=()

After extending the domain of the zeta function,
one can also compute its values at negative
Integers:

Bn+1

((—n) = =



We get rather bizarre
formulas:

14+2+3+..=((-1)=-B*/2=~1/12

12+22+32 g( 2) =—-B3/3=0
) =

134923 435 4 .((—3) = —B*/4 = 1/120
14 +2* +3*+ ... =((-4)=-B°/5=0
1°4+2°+3°+ ... =((-5) = —-B"/6 = —1/252

194+2043%+ ... =¢(—6) =—B"/7=0



Note that the Bernoulli numbers come up for both negative
and positive s values

1/17 +1/27+1/3" + ... = ((7) = 1.00834...

¢

. . ' 22(3)—1
1/1°4+1/2° +1/3° + ... = ¢(6) = B |B®|7® = 7°/945
1/1° +1/2° +1/3° + ... = ((5) = 1.03692...

“ “ “ 22(2)—1 |
/10 +1/2" +1/3" + .. = ((4) = =——|B"[z" = 7" /90
1/1° +1/2° +1/3% + ... = {(3) = 1.20205

92(1)—1
1/124+1/2°+1/3° 4+ ... =((2) = 5 |B?|7* = % /6
1/14+1/241/3+...=((1) =
1+14+1+..=((0)=-B'=-1/2

14+243+..=((-1)=-B*/2=-1/12
124+2°4+3%°+...=((-2)=-B*/3=0

1° +2° + 3%+ ..¢(-3) = -B*/4=1/120
11420 4+3"+ ... =((-4)=-B’/5=0
1°4+2° 43"+ ... =((-5) = —B%/6 = —1/252
164264364 .. =(¢(-6)=—-B7/7=0
1" 4+2"+3"+...=((-7) = —B%/8 = 1/240



Regular primes

*An prime p is called regular it it does not divide the numerator
of BAk tor k=2,4,6,...,p-3

*|t is conjectured that about 60.65% of all primes are regular
*In 1850 Kummer proved Fermat’s Last Theorem for regular
primes, I.e. a\p+ b”Ap = ¢cAp has no solutions, provided p is a
regular prime. It would be ~150 years before this was

Ernst Kummer
Born 1810 in Sorau, Prussia



Bernoulll numbers In
stable homotopy theory

Let S""denote the n-dimensional sphere.

N
- \ »\ \‘\
) \
T \ / & '
|




L et =(5") denote the ith homotopy
group of the n-dimensional sphere:

m;(S™) := {continuous maps from S* to S™}/ ~,

where for maps f: S* — S™ andg:S" — S™ we have
J ~ g if and only if f and be deformed into g through
continuous maps

D Y b a 3

Ex: 71(S?) has only one element




There are more homotopy
groups of spheres than
one might expect.

Ex: m3(5%) = Z,
generated by the Hopf map h : S° — 52



http://en.wikipedia.org/wiki/Hopf_fibration

Suspension of a
topological space

For a topological space X, there is something called
the suspension of X, denoted XX

D AN

Ex: 87 = §n+l

http://en.wikipedia.org/wiki/Suspension_%28topology %29
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For a topological space X, there is something called
the suspension ot X, denoted XX

N
= e O

Givenamap f: X =Y,
we get amap Xf : XX — XY

i

— > Lac>
— _—
N N




his means that there isamap 7k (S™) = Trnipr1(S™T)

The Freudenthal suspension theorem states that this is an
isomorphism if N > k+1

Let Il denote 7,1k (S™) for n >> k

In general, the tield of stable homotopy theory studies what
happens to topology when you suspend everything Iin sight
a million times.



Computing m;(S™) is an extremely difficult open problem in topology.

We know the values for small values of 2 and n:

T4 M M3 My 5 Mg Ty ;] Mg Mo T4 M2 43 M4 THs
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z,° ZaXZ" 2,°
52 0 2 4 22 Z 21 ) Zz 23 ZJ Z‘b z‘g 2 21 X&y BaXez <
$ 0o 0 z 2| Zn 2, 2z, Z, Z. z, % z.xz W L
2 2 3
s 0o 0 0 zZ Z, zlva, ¥ B zguz z. 2, T z.,0x@pxz, W&
$ o 0 0o 0  Z 2 T .lz z z 2, I Z; Z,,xZ,
3
$$ 0o 0 0 0 0 | Z | Z | Z | Zog | O 2 2, | Zy Loz, L
3
s 0 0 0 0 0 0 2 | 2 | 2 | 2, | O 0 Z, i Z;
$ o0 0 0 0 0 0 0 Z 2, I, Zy O 0 Z Zx24p)

http://en.wikipedia.org/wiki/Homotopy groups_of spheres#Table_of_stable_homotopy groups
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Computing 7;(S™) is an extremely difficult open problem in topology.
Computing II; is in principle easier, but still a very hard open problem.

We know the answer for small values of k:

n - 0 1 2 3 4 5 6 7

Mosn® 00 2 2 8-3 2 16-3-5
Mg | 22 | 222| 23 8-9.7 3 22 32.2.3:5
M6en 2.2 223 82 8:2:3:-11 8-3 22 2.2 | 16-8-2:9-3-5-7-13
M244n 2:2 2.2 || 22.3 83 2 3 2.3 64-22.3:-5-17
M.l 228 || 224 || 4.28 || 8.22.27.7:-19 | 2:3|| 223 |4.2:3.5| 16-2°.3-3-25-11
Magen® |2:4-24.3| 2.2% ||8-22.3 8-3-23 8 ||16-23.9.5|| 2%.3 |32-4.23.9.3.5.7:13
Mgens | 2:4-2% |2-2.3|| 23.3 8-4-22.3 | 2°.3 24 4-2 16-3-3-5-29
Mseguno|| 22 | 2:23|| 22 ||8:22.9.7.11-31| 4 : 4.22.3 128.23.3.5-17

http://en.wikipedia.org/wiki/Homotopy groups_of spheres#Table_of stable homotopy groups
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Bernoulll numbers enter the picture
via the so-called J homomorphism

Let O(n) denote the orthogonal group consisting of all
nxn matrices A such that ATA = AAT = |,

O(n) is a Lie group. Roughly speaking this means that:

e |tisagroup, l.e. we can multiply and invert
elements
 |tis atopological space, i.e there is a natural
notion of two elements being “close” to each
other



Let O(n) denote the orthogonal group consisting of all nxn matrices A such
that ATA = AAT = |,

O(n) is a Lie group. Roughly speaking this means that:

It Is a group, i.e. we can multiply and invert elements
It is a topological space, i.e there is a natural notion of two elements
being “close” to each other

Since O(n) is a topological space, it makes sense
to talk about its homotopy groups

It turns out that 7 (O(n)) Is Independent of k for n >> K

Bott computed 7, (O(0)), and remarkably the
answer Is 8-periodic!



Bott periodicity:

Raoul Bott
b. 1923 in Budapest, Hungary

N T T e T e e e N e e
N i Y Y e Y e N e e N N N Y

et e waa” wa” e e’ e e e’ e’

N N N S S S S S S SN



There 1s a homomorphism

J:mi(OMn)) = min(S™)
Taking n to be rather large, we get a subgroup Im(J) C II;

Im(J) consists of classes of maps f: S% — S

such that f~!(p) for a random point p € S°
is a (a — b)-dimensional sphere

BZI{:
Im(J)| = 2- denominator (%>
for Im(J) C Iyx_1



Bernoulll also come up In
formulas for the numbers of
‘exotic spheres” In dimension n

Let ©,, denote the group of n-dimensional exotic spheres

Milnor and Kervaire (1962) showed:

O 1| = R(k) - [Tls_1| - B2 /2K a;

where

R(k) :=2%732%~1 _1) if kis even
R(k) :=2%2(2%~1 _1) if kis odd



Thanks for listening!



